Coral Reefs, Climate, & Coral Bleaching June 18 - 20, 2003 **Turtle Bay Resort Hotel, Oahu, Hawaii** The Hydrodynamics of a William Skirving & Craig Steinberg

Bleaching Event

Contributors:

Richard Brinkman, Mike Mahoney, Severine Choukroun Lance Bode & Luciano Mason

Overview

Mixing - important?

Bleaching event - Hydrodynamics - Modeling SST

Hydrodynamics - Reef induced mixing - Model scales

Talk outline

Mass Coral Bleaching in 1998 and 2002– primary link with SST NOAA AVHRR stuff – sgbr sst, ray's maps over sst, terry's validation

SST complexity explained by mixing processes

Need a knowledge of the environment – weather - both atmospheric and oceanic

Mixing models - spawning aggregations, fronts, turbidity, productivity

Physical controls on heating by mixing processes: Wind, currents – tides and low frequency, CSW, waves

Source of cool water - upwelling & subsurface intrusions and upwelling

Stepwise approach

1d – formation of the surface heat layer

2d – spatial currents and bathymetry allow an idealised regional to reef-scale model

3d – baroclinic – explore ameliorating mechanisms – upwelling/intrusions

Sub reed scale temperature – davies, scott & heron Davies locations, data – from sbe39

Connectivity
Larval dispersal, gene flow

Hydrodynamic Mixing

Southern GBR SST for 16th to 18th Feb 1998

Hydrodynamic Mixing

Southern GBR Temperature transect 16-18 February

Why is Mixing Important?

Water depth water surface

Temperature ----

Hydrodynamic Mixing

Mixing mechanisms:

- Wind
- Low frequency currents (eg East Australian Current, Gulf Stream)
- High frequency currents (tides)
- Swell waves

Bleaching weather

Myrmidon Reef daily average wind speed and maximum daily tidal range

25th January to 21st February, 1998

Bleaching weather

Animation of SST for 25th Jan to 21st Feb 1998

TEMPERATURE PROFILE

1-D modelling – Development of Stratification **Temperature (deg C)** 28 deg C 32 deg C 0 **Depth** (m) 24 Jan 1998 6 Feb 1998 **Dissipation Rate** 0 **Depth** (m) NOAA 24 Jan 1998 6 Feb 1998 OF MARINE SCIENCE

Bleaching Weather

- 1. Little to no wind
- 2. Clear sunny skies
- 3. Weak currents

Hydrodynamic Mixing

Mixing mechanisms:

- Wind not during bleaching
- Low frequency currents (eg East Australian Current, Gulf Stream)
- High frequency currents (tides)
- Swell waves

Modeling swell waves

Preliminary research has shown that a 1m wave with a period of 8 seconds will mix to a depth of 50 metres in less than half a day. On average, this would translate to a surface temperature drop of 3 °C on the exposed side of an outer reef of the Great Barrier Reef during the 1998 bleaching.

Modeling currents for bleaching SSTs

- Include advection
- 3D mixing behind reefs
- Upwelled water near shelf edge
- Breaking internal waves

Model

Mixing in the GBR

Whitsunday

Image courtesy NASA/GSFC/LaRC/JPL, MISR Team

Mixing in the GBR

Whitsunday

Image courtesy NASA/GSFC/LaRC/JPL, MISR Team

Mixing in the GBR OF MAKINE SCIENCE

Coral Reef induced mixing

30 km

$$Re = \frac{UW}{v}$$

c Re > 20 Flow instabilities form

d Re >>20 Meandering far down stream Karman vortices are shed

SST of the GBR MACKAY

Upwelling: New Caledonia

From Wolanski, et al (2002): Merging scales in models of water circulation: Perspectives from the Great Barrier Reef

OF MARINE SCIENCE

Modelling the GBR

Central GBR – modelled SST

Mixing model – Davies Reef, GBR

Dispersal modelling around a reef

Dispersal modeling around a reef

CURRENT PATTERNS AND LARVAL DISPERSAL

Maurice K. James, Luciano B. Mason, Lance Bode and Paul R Armsworth

James Cook University, Townsville, AUSTRALIA

Reef scale processes: Transport models for larval fishes: Recruitment patterns

Conclusions

For a bleaching event ...

- Calm, sunny & small tides
- Complex SST patterns are predictable
 - Potential for prediction of mass bleaching
- Hydrodynamic models
 - Need to be multi-scale
 - Useful in MPA design
 - Can explain other issues
 - Connectivity
 - Productivity issues
 - Zooxanthellae issues
 - Spawning issues

